FUZZY ASSOCIATIVE
MEMORIES e

S/ ,
~FUZZY SYSTEMS'AS BETWEEN-CUBE MAPPINGS:

Chapter 7 introduced multivalued or fuzzy sets as‘pointsin the unit hypercube
I" = [0, 1)*. Withinthe cube we were interested in the distance between points. This
led ‘to ‘measures of the size -and ‘fuzziness of a fuzzy set ‘and, more fundamentally,
to a ‘measure of how much one fuzzy set is a‘subset of another fuzzy set. This
within-cube theory directly extends to the continuous case where the space X is a
subset of ‘R™ ‘or, in general, where X ‘is-a subset of products of real or complex
spaces.

The next step considers mappings between fuzzy cubes. This level of abstrac-
tion provides a surprising and fruitful alternative to the propositional and predicate-
calculus reasoning techniques used in artificial-intelligence (AI) expert systems. It
allows us to reason with sets instead of propositions.

The fuzzy-set framework is numerical and multidimensional. The Al frame-
work is symbolic and one-dimensional, with usually only bivalent expert “rules”
or propositions allowed. Both frameworks can encode structured knowledge in lin-
guistic form. Buf the fuzzy approach ‘translates the structured knowledge into a
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(A technical comment is in order for sake of historical clarification. A tenet,
perhaps the defining tenet, of the classical theory [Dubois, 1980] of fuzzy sets as
functions concerns the fuzzy extension of any mathematical function. This tenet
holds that any function f: X — Y that maps points in X to points in Y extends
to map the fuzzy subsets of X to the fuzzy subsets of Y. The so-called exen-
sion principle defines the set-function f: F(2X_ ) — F(ZY),*Where F(2X ) denotes
the fuzzy power set of X, the set of all fuzzy subsets of X. The formal def-
inition of the extension principle is complicated. The key idea is a supremum
of pairwise minima. Unfortunately, the extension principle achieves generality
;‘lcﬂztg;‘;: f°f ‘?Vlaht)h In general [Kosko,|'19864;!1987] ‘the extension princi-
mapping the l;g;zl;r)r;itioirf,?szgitsc!‘% by stripping the fuzzy sets of their fuzziness.
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encodes the fuzzy-seq agencine
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in a FAM-bank linguigic mau;?:.] (HEAVY, NGER) as a single linguistic entry

. In general a FAM 4
j Ste . In
FAM bank of m—mm_l__"}, .1 — p encodes and processes in parallel a

rul oo (A, B,,). Each input A to the FAM
stores (Ay, By) maps input 4 to g ’C to c'llfkrem'dcgree. The minimal FAM that
A tesembles A,, the more B i» @ partially activated version of B;. The more

res , :
B combines these partially activ:gi]bfl::zf et By rponing output fuzzy st

average of the partially activated sets; - 1"+ D B cquals a weighted

B = wlBll+"'+me:u

where w; reflects the credibility, frequency, or strength of the fuzzy association
(As Bf)-. In practice we usually “defuzzify” the output -waveform: B to a single
23:3?3‘:;::::;{5" Y by o;;mguting the fuzzy centroid of B with respect to the
iscourse Y.

More general still, a FAM system encodes a bank of compound FAM rules
M associate multiple output or consequent fuzzy sets B}, ..., B? with multiple
input or antecedent fuzzy sets Af, ..., A7, We can treat compound FAM rules as -
compound linguistic conditionals. This allows us to naturally, and in many cases
easily, obtain structural knowledge. We combine antecedent and consequent sets
with logical conjunction, disjunction, or negation. For instance, we would interpret
the compound association gA', A?; B) linguistically as the compound conditional
“IF X! is A' AND X2 is A2, THENY is B” if the comma in the fuzzy association
(A', A%, B) denotes conjunction instead of, say, disjunction.

We specify in advance the numerical universes of discourse for fuzzy variables
X', X2, and Y. For each universe of discourse or fuzzy var?'able X, we specify
an appropriate library of fuzzy-set values, Aj, ..., A}. Cpntlguous fuz.zy sets in
a library overlap. In principle a neural network can estimate these libraries of
fuzzy sets. In practice this-is usually unnecessary. The library sets represent a
weighted, though overlapping, quantization of the input space X. They represent
the fuzzy-set values assumed by a fuzzy variable. A different .Ilbrary of fuzzy -sels
similarly quantizes the output space Y. Onge we deﬁpe the library of fuzzy sets,
we construct the FAM by choosing appropriate combinations of '"PU}‘af“ output
fuzzy sets, Adaptive techniques can make, assist, or modify these choices. ,
" Anadaptive FAM (AFAM) is a time-varying FAM system. Systlem P e
gradually change as the FAM system samples z_md processes da;a. Bfr;)i:/in cdma s
how neural network algorithms can adaptively infer FAM rules Ir omh S [heg libraries
principle, leaming can modify other FAM system components, Suc
of fuzzy sets or the FAM-rule weights w;. ) C eeter ’

»B)ellow we propose and illustrate an unquch'sefj- adapt;‘\:]ce c[l':: lg::f :(f:h;r:,l
based, on competitive leaming, to “blindly” generate and ref o nave additional
rules, In some cases we can use supervised lpammg techniques
information to accurately generate error estimates.
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/
_FuzzY AND NEURAL FUNCTION ESTIMATORS

Neural and fuzzy systems estimate sampled functions and‘.bqhave as ass9ciative
memories. They share a key advantage over traditional statlstlcal-estlmat-lon_and
adaptivéécontrol approaches to function estimation. They are r{u.)del-free estimators.
Neural and fuzzy systems estimate a function without requiring a mathematical
description of how the output functionally depends on the input. They “learn from
example.” More precisely, they leam from samples. . :

Both approaches are numerical, can be partially described w1.th th‘eoremS, and
admit an algorithmic characterization that favors silicon and optical implementa-
tion. These properties distinguish neural and fuzzy approaches from the symbolic
processing approaches of artificial intelligence. | *

Neural and fuzzy systems differ in how they estimate sampled functions. They
differ in the kind of samples used, how they represent and store those samples, and
how they associatively “inference” or map inputs to outputs. .

These differences appear during system construction. The neural approach
requires the specification of a nonlinear dynamical system, usually feedforward, the
acquisition of a sufficiently representative set of numerical training samples, and the
encoding of those training samples in the dynamical system by repeated learning
cycles. The fuzzy system requires only that we partially fill in a linguistic “rule
matrix.” This task is markedly simpler than designing and training a neural network.

Once we construct the systems, we can present the same numerical inputs to either-
system. The outputs will reside in the same numerical space of alternatives. So
both systems define a surface or manifold in the input-output product space X x Y.
We present examples of these surfaces in Chapters 9, 10, and 11.

Which system, neural or fuzzy, is more appropriate for a particular problem
depends on the nature of the problemand the availability of numerical and structured
data. To date engineers have applied fuzzy techniques largely to control problems.

These problems often permit comparison with standard control-theoretic and expert-
system approaches. Neural networks so far seem best applied to ill-defined two-class
pattern-recognition problems (defective or nondefective, bomb or not, etc.).

Fuzzy systems estimate functions with fuzzy-set samples (A;, B;). “Neural
systems use numerical-point samples (z;, y;). Both kinds of samples reside in the
input-output product space X x Y.

Figure 8.1 illustrates the geometry of fuzzy-set and numerical-point samples :
taken from the function f: X — Y. - 4

/ Engineers sometimes call the fuzzy-set association (4;, B;) a “rule.” Thisis
misleading, since reasoning with sets is not the same as reasoning with propositions. -
Reasoning with sets is harder. Sets are multidimensional, and matrices, not propor-
tional conditionals, house associations. We must take care how we define each term
and operation. We shall refer to the antecedent term A; in the fuzzy association.
(Ai, B;) as the input associant and the consequent term B; as the output associant.

.. The fuzzy-set sample (A;, B;) encodes structure. It represents a mapping, &
minimal fuzzy association of part of the output space with part of the input space- =
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FIGURE 8.1 Function f maps domain X to range Y. In the first illustration
we use several numerical-point samples (zi, y;) to estimate f: X — Y. In
the second case we use only a few fuzzy subsets A; of X and B; of Y. The
fuzzy association (Ai, B;) represents system structure, as an adaptive clustering
gl 1 “algorithm might infer or as an expert might articulate. In practice there are usually
Jirveds, fewer different output associants or ‘rule” consequents B, than input associants
or antecedents A;.

In practice this resembles a meta-rule—IF Ai, THEN B;—the type of structured
linguistic rule an expert might articulate to build an expert-system “knowledge
base.” The association might also represent the result of an adaptive clustering
algorithm.
Consider a fuzzy association for the intelligent control of a traffic light: “If
the traffic is heavy in this direction, then keep the light green longer.” The fuzzy
' “IiTassociation is (HEAVY, LONGER). The input fuzzy variable traffic density assumes
“olithe fuzzy-set value HEAVY. The output fuzzy variable green light duration as-
'f"‘*'rzm‘sumes the fuzzy-set value LONGER. Another fuzzy association might be (LIGHT,
119" SHORTER). The fuzzy system encodes each linguistic association or “rule” in a
:"{"?-5-“f’fnumericalffuzzy associative memory (FAM) mapping. The FAM then numerically
Eivprocesses numerical input data. A measured description of traffic density (e.g., 150
m.‘ -cars per Unit road surface area) then corresponds to a unique numerical output (e.g.
T2 3 seconds), the “recalled” output.
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The degree to which a particular measurement of traffic density is heavy

d;apends on how we define the fuzzy set of heavy traffic. The definition may arise

from statistical or neural clustering of historical data or from pooling the responses

: ineer and the problem-domain expert agree on
of experts. In practice the fuzzy engl lues for the fuzzy variables.

ible libraries of fuzzy-set va
o Ofl"lr:leangE::St; which the traffic light stays green 19nger depends on theddegree
to which the measured traffic density is heavy. In the simplest case the two degrees
are the same. In general the two degrees differ. In actual fuzzy systems the output-
control variables—in this case the single variable gree{I-llght duratlon——dfepend.on
many FAM-rule antecedents or associants activated to different degrees by incoming

data.

J(eural vs. Fuzzy Representation of Structured Knowledge

The distinction between fuzzy and neural systems begins with how they rep-
resent structured knowledge. How would a neural network encode the same asso-
ciative information? How would a neural network encode the structured knowledge
“If the traffic is heavy in this direction, then keep the light green longer™? ;

‘ The simplest method encodes two associated numerical vectors. One vector
‘represents - the inpu} associant HEAVY. The other represents the output associant
LONGER/ But this i too simple. For the neural network’s fault tolerance now works
to its disadvantage. The network tends to reconstruct partial inputs to complete
sample inputs. It erases the desired partial degrees of activation. If an input is close
to A;, the output will tend to be B;. If the output is distant from A;, the output will
(>nd to be some other sampled output vector or a spurious output altogether. :

A better neural approach encodes a mapping from the heavy-traffic subspace
to the longer-time subspace. Then the neural network needs a representative sample
set to capture this structure. Statistical networks, such as adaptive vector quantizers, ]
may need thousands of statistically representative samples. Feedforward multilayer
1}1\3\:;13;1 eg:tw;)rks trained 'with the b:dckp.ropagation algorithm in Chapter 5 may need

of representative numerical input-output pairs and may need to recycle
these samples tens of thousands of times in the learning process. .
burden of ?2:2}1; pploach suffors a deeper problem than just the computational -
s ’ oes it encode? How d kn codes *

the original structure? What does i 1o we, know. the network encog
at does it recall? There is no natural inferential audit trail.

System nonlinearities i
. X wash it away. Unlike an expert s ich
inferential paths the network uses to r. pert system, we do not know whi

aths exi , each a given output or even which inferential
If?unciigzlﬂ'u?l]ﬁcw 1s only a 1arge_ system of synchronous or asynchronous nonlinear
mathcmaiical m:(‘leslaz,fttl\]:“? (:ﬁptlve Kalman filter, we cannot appeal to a postulated
estimation is, after all, the cent:a?l:;tput state depends on the input state. Model-freé

cost is system inscrutability. omputational advantage of neural networks. Th

We ar i
e left with an unstructured computational black box. We do not knoW
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what the r?el_lral network encoded during training or what it will encode or forget in
further training. (For competitive adaptive vector quantizers we do know that synap-
tic vectors asymptotically estimate sample-space centroids and perhaps higher-order
moments.) We can characterize the neural network’s behavior only B‘y exhaustively
passing gll lpputs through the black box and recording the recalled outputs. The
characterization may use a summary scalar like mean-squared error.

This black-box characterization of the network’s behavior involves a compu-
tational dilemma. On the one hand, for most problems the number of input-output
cases we need to check is computationally prohibitive. On the other, when the num-
ber of input-output cases is tractable, we may as well store these pairs and appeal
to them directly, and without error, as a look-up table. In the first case the neural
network is unreliable. In the second case it is unnecessary.

A further problem is sample generation. Where did the original numerical
point samples come from? Did we ask an expert to give numbers? How reliable
are such numerical vectors, especially when the expert feels most comfortable giving
the original linguistic data? This procedure seems at most as reliable as the expert-
system method of asking an expert to give condition-action rules with numerical
uncertainty weights. o '

Statistical neural estimators require a “statistically representative” sample set.
We may need to randomly “create” these samples from an initial small sample
set by bootstrap techniques or by random-number generation of points clustered
near the original samples. Both sample-augmentation procedures assume that the
initial sample set sufficiently represents the underlying probability distribution. The
problem of where the original sample set comes from remains. The fuzziness of
the notion “statistically representative” compounds the problem. In general we do
not know in advance how well a given sample set reflects an unknown underlying
distribution of points. Indeed when the network adapts on-line, we know only past
samples. The remainder of the sample set resides in the unsampled future.

In contrast, fuzzy systems directly encode the linguistic sample (HEAVY,
LONGER) in a dedicated numerical matrix, perhaps of infinite dimensions. The
default encoding technique is the fuzzy Hebb procedure discussed below. For prac-
tical problems we need not store this large, perhaps infinite, numerical matrix.
Instead we use a virtual representation scheme. Numerical point inputs permit this

' simplification. Mathematically we implicitly pass large unit bit vectors, or delta
" pulses in the continuous case, through the FAM-rule matrix. In general we describe
inputs by an uncertainty distribution, probabilistic or fuzzy. Then we must use the
entire matrix or reduce the input to a scalar by averaging.

For instance, if the heavy traffic input is 150 cars, we can omit the FAM matrix.
Below we refer to these systems as binary input-output FAMs, or BIOFAMs. But if
the input is a Gaussian curve with mean 150, then in principle we must process the
vector input with a FAM matrix. (In practice we might use only the mean.) The
dimensions of the l/inguistic FAM-bank matrix are usually small. The dimensions
reflect the quantization levels of the input and output spaces, the number of fuzzy-set
Values assumed by the fuzzy variables.
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The fuzzy approach combines the purely numerical approaches of neural net-
works and mathematical modeling with the symbolic, structure-rich approaches of
artificial intelligence. We acquire knowledge symbolically—or numerically if we
use adaptive techniques—but represent it numerically. We also process data nu-
merically. Adaptive FAM rules correspond to common-sense, often nonarticulated,
behavioral rules that improve with experience. : \

This approach does not abandon neural-network techniques. Instead, it limits
them to unstructured parameter and state estimation, pattern recognition, and cluster_
formation. The system architecture remains fuzzy.

\/(AMS as Mappings

Fuzzy associative memories (FAMs) are transformations. FAMs map fuzzy
sets to fuzzy sets. They map unit cubes to unit cubes, as in Figure 8.1. In the simplest
case the FAM system consists of a single association, such as (HEAVY, LONGER).
In general the FAM system consists of a bank of different FAM associations. Each.

- association  corresponds to a different numerical FAM matrix, or a different entry in
a linguistic FAM-bank matrix. We do not combine these matrices as we combine
or superimpose neural-network associative-memory (outer-product) matrices. (An
exception is the fuzzy cognitive map [Kosko, 1988; Taber, 1987, 1991].) We store
the matrices separately and access them in parallel. This avoids crosstalk. Since
we use a virtual (BIOFAM) representation scheme, the computational burden of the
parallel access is light. oy i1 . : 8

We begin with single-association FAMs. For concreteness let the fuzzy-set pair
(A, B) encode the traffic-control association (HEAVY, LIGHT). We quantize the do-
main of traffic density to the n numerical variables x,, x5, ..., z,. We quantize the
range of green-light duration to the p variables yy, 1, ..., yp. The elements z; and
y; belong respectively to the ground sets X = {z, ..., z,} and Y = {1, ..., %}-
) might represent zero traffic density. y, might represent 10 seconds. |

The fuzzy sets A and B are multivalued or fuzzy subsets of X and Y. So
A defines a point in the n-dimensional unit hypercube I™ = [0, 1]*, and B defines
a point in the p-dimensional fuzzy cube I?. Equivalently, A and B define the
membership functions m4 and mp that map the elements z; of X and y; of Y t0
degrees of membership in [0, 1]. The membership values, or fir (fuzzy unit) values,
indicate how much z; belongs to or fits in subset 4, and how much y; belongs to B..
We describe this with the abstract functions m4: X — [0, 1] and mp: Y — [0, 1]-
We shall freely view sets both as functions and as points in fuzzy power sets. ,

. The geometric sets-as-points interpretation of finite fuzzy sets A and B 25
points in unit cubes allows a natural vector representation. We represent A and.

B by the numerical fit vectors A = (a1,...,a;) and B = (by, ..., bp), whe
cg = 11:16;(:1:0, and b; = mp(y;). We can interpret the identifications A = HEAVY and ‘
=LONGER to suit the problem at hand. Intuitively the a; values should increasé
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fic Light Medium Heavy

%, =0 50 100 150 =200

Traffic density

FIGURE 8.2 Three possible fuzzy subsets of traffic-density space X. Each fuzzy
sample corresponds to such a subset. We draw the fuzzy sets as continuous

membership functions.. In practice membership values are sampled or quantized.
So the sets are points in sorne unit hypercube I™.

as the index i incrcasbs, perhaps approximating a sigmoid membership function.
Figure 82 111ustrates three possible fuzzy subsets of the universe of discourse X.
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Most fuzzy systems found in applications are fuzzy Hebb FAMs [Kosko,
1986b]. They are fuzzy systems S I™ — I? constructed in a simple neurallike man-
ner. As discussed in Chapter 4, in neural-network theory we interpret the classical

Hebbian hypothesis of correlation synaptic learning [Hebb, 1949] as unsuperVised
learning with the signal product S;S;: ‘ |

mi; = —mi; + Si(x;)S;(v;) @8

For a given pair of bipolar row vectors (X, Y), the neural interpretation gives the
outer-product correlation matrix g :

M = XTy (84)
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X by the minimum of the “signals”
¢ we shall call correlation-minimum encoding:

™ij = min(a, b) . (@)
given In matrix notation as the Juzzy outer-producy
M = ATop (8-6)

l.VIa.demi [1977] and Togai [1986] independently arrived at the fuzzy Hebbian.
prescription (8-5) a5 a multivalued logical-implication operator: truth (a; — &) =
min(a;,.b;). The min operator, though, is a Symmetric truth operator. So it does

0. In contrast, a like desire to define g “conditional-possibility” matrix pointwise
with continuous implication values led Zadeh [1983] to choose the Lukasiewicz
implication operator: m,; = truth (a: = ;) = min(1, 1 —g +b;). Unfortunately the
Lukasiewicz operator usually equals or approximates unity, for min(1, 1-g;+5;) < 1
. ff a; > b;. Most entries of the resulting matrix M are unity or near unity. This
ignores the information in the association (4, B). So A'o'M tends to equal the
. largest fit value a} for any system input A’, ; .
. We construct an autoassociative fuzzy Hebb FAM matrix .by encoding the
redundant pair (A, A) in (8-6) as the fuzzy autocorrelation matrix:| . '
| | M=AToA 8-7
In the previous example the matrix M was such that the input A=(.3 4 8 1)
recalled fit:vector B ='(.8 .4 .5) upon max-min composition: 4o M = B. Will A
«.still recall B if we replace the original matrix M with the fuzzy Hebb matrix found
iwith (8-6)? -Substituting A and B in (8-6) gives s iRt |

3 = ' | 3 3. 3
sloning s ! 4 Co W 4 4 4
M,= AToB = 3 o(.8 .4 .5): = Il 8 4 5

This fuzzy Hebb matrix M illustr: properties. First, the ith row of
.. . This fuzzy Hebb matrix M illustrates two key properties. ; \
M equals the ;ﬁrwise minimum of a; and the output associant B. Symmetrically,
the jth column of M équals the pairwise minimum of b; and the input associant A:

ay\B
{ Nyt n L OIEL M" ; : (8'8)
3 SRRTEN G W
= B AAT]. b A AT] (8-9)

Where the cap operatdr &ehoies pairwise minimum: a; A b; = min(a;, b;). The term
% A B indicates componentwise minimum:

aiAB = (aiNAby,...,a;Aby) (8-10)
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Hence if some ax = 1, then the kth row fOf M equ?isatBl.e :;Sgr;:r gbg =1, the
{ if some a as

column of M equals A. More generally, 1 j\(/} equ :ls B, every p,

f the fuzzy Hebb matrix
then the kth row ot deand fgurth rows of M equal the fit vector B. Yet no colup,
perfect recall in he forward direction, A o Mi=:B, but no

MT #£ A:
(845 = B i
= AlCcA"

equals A. This allows
in the backward direction, Bo

AoM =
BoMT = (3 4 8 .8)

A is a proper subset of 4 : A’ £ Aand S(4', A) = 1, where S measurés',‘t’he degree
of subsethood of A’ in A, as discussed in Chapter 7. In other words, a};< g; for
each i and aj, < aj for at least one k. The bidirectional FAM theorems; below show

that this holds in general: If B' = Ao M differs from B, then B' is a proper subset
of B. Hence fuzzy subsets map to fuzzy subsets. arilciih

Ae Bidirectional FAM Theorem for Cor‘relat‘lon-MIi_)im»um‘ _:Epiéodlng
Jses the traditional [Klir, 1988] fuzzy-set notions of

Analysis of FAM recall |
f fuzzy sets. The height H(A) of fuzzy set A is the

the height and the normality 0
maximum fit value of A:*

H(A) = :{Q{(a{lai

A fuzzy set is normal if H(A) = 1, if at least one fit value ay’is maximal: ag = 1.
In practice fuzzy sets are usually normal. We can extend a rionnormal fuzzy set
toa norlmal fuzzy set by adding a dummy dimension with' corresponding fit value
Ang] = 1. :
/" Recall accuracy in fuzzy Hebb FAMs constructed with correlation-minimum
encoding depends on the heights H(A) and H(B). Normal fuzzy sets exhibit perfect
ecall. Indeed (A, B) is a bidirectional fixed point—AoM = B, and Bo MT = A—
if and only if H(A) = H(B), which always holds if A and B are normal. This
1 is a carollary of the bidirectional FAM theorem [Kosko, ‘1986a] for correlso%
+'minimum éncoding. ‘Below we present a similar’ theoréem 'for correlation-produc
“encoding. - " SRR ¢ ariwiaq o) slsops b nuion droedlis

Correlation-minimum bidirectional FAM theorem. If M = AToB; thef
fi) AOM=B iff H(A) > H(B) ’
f“) Bo MT = A iff H(B) > H(A)
(iii) A'oMCB forany A’
“(@v) B'oMT'C A" forany B

B
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31
: Proof.- Observe that the height H (

A
Ao AT )

€quals the fuzzy norm of A:
= m:ax a; A\ a;

Then C e = HGAE
AoM = Ao (AT o B)

= (AoAT)oB

= H(A)oB_

= H(A)AB

So H(A) A B = B iff H(A) > H (B), establishing (i). Now suppose A'is an

AoM = (AoAT)oB
= (AoA")AB

-which establishes (111) since A’ oAT < H(A). A similar argument using M T = PBToA
establishes (ii) and (iv): Q.E.D.. 3

The equality Ao AT = H(A) implies an 1mmed1ate corollary of the bidirectional
FAM theorem. Supersets A'.D A behave the same as the encoded input associant
A: A'o M = B if Ao M = B. Fuzzy Hebb FAMs ignore the information in the
difference A’ — A, when AC A'.

v(%orrelatlon-Product Encodlng

lternative fuzzy Hebbian encod-
Correlation-product encoding provides an a
ing scheme. 'The sI,)tandard mathematical outer product of the fit vectors A and B

 ~ forms the FAM matrix M. Then

I e

and in matrix notation,
M = ATB : (8-12)
So the ith row of M equals the ﬁt-scaled fuzzy set a;B, and the Jm Ul of Bt

- equals b; AT:
: R a) B
M o . (8-13)
a,B e

_ [b1AT]...IbnAT] (8-14)
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If A=(3 4 .8 1) and B=(8 .4 .5) as above, we encode the FAM rule (4, B) "
with correlation product in the following matrix M: E

24 .12 .15
32 .16 2 4

M=1 61 32 4 ¢
8 4 5

Note that if A’ = (0 0 0 1), then A’oc M = B. The FAM system recalls output
associant B to maximal degree. If A’ = (1 0 0 0), then A’ o M = (24 .12 15).
. The FAM system recalls output B only to degree .3. ‘ :

- Correlation-minimum encoding produces a matrix of clipped B sets, while -
correlation-product encoding produces a matrix of scaled B sets. In membership-
function plots, the scaled fuzzy sets a;B all have the same shape as B. The clipped
fuzzy sets a; A B are flat at or above the a; value. In this sense correlation-product
encoding preserves more information than correlation-minimum encoding, an im-
portant ‘point in fuzzy ‘applications when we add output fuzzy sets together as in
Equation (8-17) below. In the fuzzy-applications literature this often leads to the
selection of correlation-product encoding. o S . ok
‘7 Unfortunately, the fuzzy literature invariably confuses the correlation-product
' “encoding scheme with ‘the max-product composition“method of recall or infer-
' ence, as mentioned above. This widespread confusion warrants formal clarifica-
tion. SR e b 5
* In practice, and in the fuzzy applications developed in the next chapters,
the input fuzzy set A’ is a binary vector with one 1 and all other, elements 0—a
row of the n-by-n identity matrix (or a delta pulse in the continuous case). A’ E
.. represents the occurrence of the crisp measurement datum z;, such as a traffic
. density value of 30. .When applied to. the encoded FAM rule (A, B), the mea-

surement value z; activates A to degree a;. This is part of the max-min com-
position recall process, for A’ o M = (AoAT)oB = q; A B or a;B depending
- on whether we encoded (4, B) in M with correlation-minimum or correlation-
product encoding. We activate or “fire” the output associant B of the “rule” to

Since the values a/ are binary, ajm;; = a! A mi;. So the max-min and max-
' 1 product composition operators coincide. We avoid this confusion by referring to both

the_recall process and the correlation encoding scheme as correlation-minimum
inference when we combine correlation-minimum encoding with max-min compo-
sition, and as correlation-product inference when we combine correlation-product
encoding with max-min composition. ‘

We now prove the correlation-product version of the bidirectional FAM
theorem. | _
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Correlation-product bidirectional F o
and B are nonnull fit vectors, then AM theorem.  If M = A _B and A

(1) AoM =B iﬁH(A):l
(i) BoMT=4 iff H(B)=1
(iii) AoMCcB for any A’
(iv) B'oMTcCA forany B

Proof.

AoM = Ao(ATB)
= (404NB
= H(A)B

Since B is not the empty set, H(A)B = Biff H(A) = 1, establishing (i). (AoM = B
holds trivially if B is the empty set.) For an arbitrary fit vector A’ in it

AoM = (AoAT)B
c H(A)B
c B
since A’ o A < H(A), establishing (iii). (ii) and (iv) follow similarly using MT =
BTA. QED. ‘ , T

\/(uperlmposl_ng FAM Rules

Now suppose we have m FAM rules or associations ('A'l_,'f.B_l),:L.v. s (Am, Bm).

The fuzzy Hgapb?encoding scheme (8-6) leads to m FAM matrices Mj, ..., M, to

encode the associations. The natural neural-network temptation is to add, or _m.thls

case maximum, the m matrices pointwise to distributively encode the associations

in a single matrix M: o N i s Sbdh itk ity »
M = IISI}:a_éxm Mk ' . ( )

i rimposition scheme fails for fuzzy Hebbian encoding. The su.perifn-
PosedTrl:el:ui:l lt):ndslig be the matrix AT o B, where A and B denote the pointwise
maximum of the respective m fit vectors ‘Ar and By.'We ‘can sée'this from the
pointwise inequality | B o

max min(ef, ) < min(mexel, maxt) o, @16

8
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Inequality (8-16) tends to hold with equality as m increa.ses,. sinc;e all :n:la)'(in.l \
terms approach unity [Kosko, 1986a]. We lose the information in the m associatio 1S
(4%, Br)- . ! . ..

The fuzzy approach to the superimposition problem additively superimposes
the m recalled vectors By instead of the fuzzy Hebb matrices My. Bj and
correspond to |

AoMy = Ao(AfoBy)
B, oot

for any fit-vector input A applied in parallel to the bank of FAM rules (A"Z B.k).;
This requires separately storing the m associations (Ag, Bg), as if each association
in the FAM bank represents a separate feedforward neural network. .
Separate storage of FAM associations consumes space but provides an “audit

., trail” of the FAM inference procedure and avoids crosstalk. The user can directly
~ determine which FAM rules contributed how much membership activation to a “con-
cluded” output. Separate storage also provides knowledge-base modularity. The
user can add or delete FAM-structured knowledge without disturbing stored knowl-
edge. Both of these benefits are advantages over a pure neural-network architecture
for encoding the same associations (Ax, Bi). Of course we can use neural networks
exogenously to estimate, or even individually house, the associations (Ag, Bg).
Separate storage of FAM rules brings -out -another distinction between FAM

" ‘systems ‘and neural nefworks. ‘A fit-vector input A activates all the FAM rules
(Ax, Bx) in parallel but to different degrees. - If A only partially “satisfies” the
antecedent associant A, the consequent associant By only partially activates, If A
does not satisfy A; at all, B, does not activate: at all. B;..equals the null vector. 3
Neural networks behave differently. They try to reconstruct the entire associ- b
ation (A, By) when stimulated with A. If A and Ax mismatch severely, a neural
ps.the: result of the network -
. desire this for metrical classification problems, but not for inferential problems and,
argu.ably,_ for assocnatlve-memqry problems. When we ask an expert a-question
outside his field of knowledge, it may be prudent if he gives no response than

. if he gives an educated guess. .- < e

-3 N ; p ‘
ey g G itw ity e Lebsi 2 s i . . o ‘ 7 |
: ' . < L
‘ 'Y Ay > . R
1A LT 8 {
. - ) i % 'y «-t:

ecalled Outputs and “Defuzzification”

more

The recalled fit-vec

. tor output B equals ighted su  the indivi 4 :}

called vectors BL: 61 tp q a Welghted sum of the individual re 3
B = ZkaL (8-17)

k=1 ’ :
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where the nonnegative weight wy summarizes the credibility or strength of the
kth FAM rule (Ag, Bx). The credibility weights uj,;"‘are immediate candidates for
adaptive modification. In practice we choose w; =...=uw,=12asa default.

In principle, though not in. practice, the recalled fit-vector output equals a
normalized sum of the B, fit vectors. This keeps the components of B unit-interval
valued. We do not use normalization in practice because we 'iﬁvariably “defuzzify”
the output distribution B to produce a single numerical output, a“single value in
the output universe of discourse Y = {y, ..., ,}. The information in the output
waveform B resides largely in the relative values of the membership degrees.

The simplest defuzzification scheme chooses that element ymax that has maxi-
mal membership in the output fuzzy set B: ' :

MmB(Ymax) = Eglja'ék mp(y;) B (8-18)
The popular probabilistic methods of maximum-likelihood. and maximum-a-
posteriori parameter estimation motivate this ‘maximum-membership defuzzifica-
tion scheme. e bt ARy A6 Y eong 1 E'ED Jugn VL

The maximum-membership defuzzification scheme has two fundamental prob-
lems. First, the mode of the B. distribution is not unique.  This problem affects
correlation-minimum encoding, as the representation (8-8) shows, more than it af-
fects correlation-product encoding. Since the minimum operator clips off the top of
i the By fit vectors, the additively combined output fit vector B teﬁd's.'ﬁo' bé‘ﬂat over
many regions of universe of discourse Y. 'For continuous membership' functions
this leads to infinitely many modes. Even ’for-quantized"fuzzy sets, there may be
many modes. U asigqert ) e wonte 9V Eosate SHIT CEUMERIITES

~ In practice we can average multiple modes. For large' FAM ‘banks ‘of “indepen-
dent” FAM rules, some form of the central limit theorem (whose' proof ultimately
depends on Fourier transformability, not probability) tends to hold. The waveform
" B tends ‘to resemble a- Gaussian ‘memibership function.”'So:a unique mode tends
to emerge. It tends to emerge with ‘fewer samples if we use correlation-product
encoding. il h 3 90 AT G .30 1ETES

Second, the maximum-membership scheme ignores the information 'in much
of the waveform B. Again correlation-minimum encoding compounds the problem.
In practice B is often highly asymmetric, even if it is unimodal. Infinitely many
output distributions can share the same mode. ... A\ mateye MARN

The natural alternative is the fuzzy centroid defuzzification scheme. We
directly compute the real-valued output as a (normalized) convex combination of fit
values, the fuzzy centroid ‘B of fit-vector B with respect:to output:space :Y':

)

=y Tl Wl fn (8_'1‘?)
dome(y) )
']'='l R .‘ 9 Nt

, ; |
O > yms(yi) |
= j=1

7
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} FAM Rule 1
. —1 (4,,B,) =B\ |
l . FAMRule2 e \
o il > (4,8,) |—>B
j ' AW ; ‘. {
1 | ' FAM Rule m
| ;
I (Am'Bm) '__"Bm
S O B VTS R | LN il 4, L3 Y S0 L AP
" FAM SYSTEM

" FIGURE 8.3 FAM system architecture. The FAM system F maps fuzzy sets in
"'the unit cube I" to fuzzy sets in the'unit cube IP. Binary input sets model exact
input data. In general only an uncertainty estimate of the system state confronts
‘the FAM system. So A is a proper fuzzy set. The user can defuzzify output fuzzy
set B to yield exact output data, reducing the FAM system to a mapping between
. Boolean eubes. .,...,.xio. o sy 26 ubibn o
The fuzzy. centroid is unique and uses all the information in the output distribution
B. For symmetriC ynimodal distributions, the. mode and fuzzy centroid coincide.
In. many. cases we must replace the discrete sums in (8-19) with integrals over
continuously infinite spaces. We show in Chapter 11, though, that for libraries of
trapezoidal fuzzy-set values we can replace such a ratio of integrals with a ratio of
simple discrete sums. .. .., oo
Computing the centroid (8-19),is the only step in the FAM inference procedure
‘that requires division. All other operations are inner products, pairwise minima,
- and additions. This promises, realization in a fuzzy optical processor. Already some
form of this FAM-inference scheme has led to digital [Togai, 1986] and analog
[Yamakawa, 1987, 1988] VLSI circuitry, . e

] )

\f{\M System Architecture
. Figure 8.3 schematizes the architecture of thé nonlinear FAM system F. Not¢
that F' maps fuzzy sets to fuzzy sets: F(A) = B, So F defines a fuzzy-system
transformation F: I — I?, In practice A equals a bit vector with one unity valué
a; = 1, and all other fit values zero, a; =0, ora delta pulse
We defuzzify the output fuzzy set B with the centroid technique to produce
an exact element y; in the output universe of discourse Y. In effect defuzzifi

cation produces an output binary vector 0 . 4 the
rest 0s. At this level the FAM .. » @gain with one element 1 an
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system F to a mapping between Boolean cub
i es, F:. {0,1}* — {0,1}".  In
rsnanz :ggll;a:.:'): S l‘lz,fe rlnodel X and Y as continuous {ur,livl:'rses,b{f',:.'disi:ourse.
0 q arge. We shall call such systems binary input-output
FAMs. : P

Jeéry Input-Output FAMSs: Inverted-Pendulum Example

_ Binary input-output FAMs (BIOFAMs) are the most popular fuzzy systems for
applications. BIOFAMs map system state-variable data to control, classification, or
other output data. In the case of traffic control, a BIOFAM maps traffic densities to
green (and red) light durations. ' s

BIOFAM s easily extend to multiple FAM-rule antecedents, to mappings from
product cubes to product cubes. There has been little theoretical justification for
this extension, aside from Mamdani’s [1977] ‘original ‘suggestion to multiply re-
lational matrices. In the next section we present a general method for dealing
with multiantecedent FAM rules. First, though, we present the' BIOFAM algo-
rithm by illustrating it, and the FAM construction procedure, on a standard control
problem. | o i R I

Consider an inverted pendulu
inverted pendulum in two dimensions.
trol problem and admits a math-model
benchmark for BIOFAM pendulum controllers.

‘There are two state fuzzy variables and on
state fuzzy variable is the angle @ that the pendu
Zero angle corresponds to the vertical position.
the vertical, negative angles t0 the left. o o

The second state fuzzy variable is the .angular velocity AB. In practice we
approximate the instantaneous angular velocity Af as the difference between the
present angle measurement 9, and the previous angle measu;eq}ent O¢-1°

m. We wish to adjust a motor to balance an
The inverted pendulum is a classical con-
control solution. This provides a formal

e control fuzzy variable. The first
lum shaft makes with the vertical.
Positive angles are to 'the right of

Af, = Ht‘at—l

e motor current or angular ‘velocity v. The
We expect that if the pendulum falls to the

right, the motor velocity should be negative 10 compensate. If the pendulum falls
to the left, the motor velocity should be positive. ' If the pendulum successfully
balances at the vertical, the motor velocity should be zero. = .. | :

The real line R is the universe of discourse of the three, fuzzy variables. In
practice we restrict each universe of discourse t0-a comparatively small interval,
such as [—90, 90] for the pendulum angle: centered about zero. :

We can quantize each universe of discourse mt(? .ﬁve overlapping f}lzzy-sct
values, We know that the fuzzy variables can be positive, zero, or negative. We
can quantize the magnitudes of the fuzzy variables finely or coarsely. Suppose We

The control fuzzy variable 1s th
velocity can be positive of negative.
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quantize the magnitudes as small, medium, and large. This leads to seven fuzzy-get
values: '

NL: Negative Large
NM: Negative Medium
NS: Negative Small
ZE: Zero

PS: ' Positive Small
PM: Positive Medium
PL:'  Positive Large

For example, 6 is a fuzzy variable that takes N L as a fuzzy-set value. Different
fuzzy quantizations of the angle universe of discourse allow the fuzzy variable 4 to

- assume different fuzzy-set values. The expressive power of the FAM approach stems

from these fuzzy-set quantizations. In one stroke we reduce system dimensions, and

- we describe a nonlinear numerical process with linguistic commonsense terms.

Tl

We_are not concerned with the exact shape of the fuzzy sets defined on each
of the three universes of discourse., In practice the quantizing fuzzy sets are usually
symmetric triangles or trapezoids.centered about representive values. (We can think .
of such sets-as fuzzy numbers.) The set ZE may define a Gaussian curve for the
pendulum angle.6, a triangle for the angular velocity. Ad, and a trapezoid for the -
motor current v., But all the. ZE fuzzy sets center about the numerical value zero,
which will have:maximum membership in the set of zero values.

How much should contiguous fuzzy sets overlap? This design issue depends
on the problem athand. Too much overlap blurs the distinction between the fuzzy--
set values. Too little overlap tends to resemble bivalent control, producing excessive-
overshoot and undershoot. In Chapter 11 we determine experimentally the following: -
default heuristic forideal overlap: Contiguous fuzzy sets in a library should overlap-
approximately 25 percent. =

Inverted-pendulum FAM rules are triples, such as (NM, ZE; PM). They de-
scribe how;to modify the control variable for observed values of the pendulum state
variables. A'FAM rule associates a motor-velocity fuzzy-set value with a pendulum-
angle fuzzy-set value-and an angular-velocity fuzzy-set value. So we can interpret

the triple (NM, ZE; PM) as the set-level implication

IF the pendulum angle 6 is negative but medium
AND the angular velocity A is about zero,
THEN the motor.velocity should be positive but medium

These commonsensical FAM rules are comparatively easy to articulate in natural

language. Consideér a terser linguistic version of the same two-antecedent FAM'
rule:

IF. # =NM AND A9 =ZE
THEN v =PM -

Even 'this-mild level of formalism may inhibit the knowledge-acquisition process:
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the other hand, the still terser FAM triple (NM, 7. p ,
t(.)enaoqmred simply by filling in a few entries in g ling ) allows kowledge to

ractice this-often allows us to develop o working Hyut:;l,:':; :xi\'l]\:;(l::nk matrix. In
We specify the pendulum FAM systen When we choose o fp bank of

antecedent FAM rules. Perhaps the firg FAM rule 1o choose is the s'wad{m' ()f iy
rule:(ZE, ZE; ZE). The steady-state FAM ryle de steady-state FAM

scribes what 1o do in equilibys
For the inverted pendulum we should do nothing, cquilibrium,

Many control problems require hulling a scalar error measure, We can control
many multgvanable problems by nulling the norms of the system error vector and
error-velocity vectors, or, better, by directly nulling the individual scalar variables.
(Chapter 11 shows pow error nulling can control a real-time larget tracking system.)
| Adaptive error-nulling extends the FAM methodology to nonlinear estimation, con-
| trol, and decision problems of high dimension,

The pendulum FAM bank is a 7-by-7 matrix with linguistic fuzzy-set entries.
We index-the-columns ‘by the seven fuzzy sets that quantize the angle 6 universe
of discourse.. We index the rows by the seven fuzzy sets that quantize the angular
velocity A@ universe of discourse.

Each-matrix-entry canequal one of seven motor-current fuzzy-set values or
equal no fuzzy set at all. Since a FAM rule is a mapping or function, there is
exactly one output motor-current value for every pair of angle and angular-velocity

 ‘values.  So: the:49 ‘entries:in-the FAM bank matrix represent a subset of the 343
(7?) possible: two-antecedent FAM rules: In practice most of the entries are blank.
- In'the-adaptive:FAM :case:discussed ‘below; we adaptively generate the entries from
process sample data. . o
, Common sense-and engineering. judgment dictate the entries in the pendulum
FAM-bank:-matrix: Suppose the:pendulum does. not move. . So A@ = ZE. If the
Pendulum tilts to:the:right of vertical, the-motor vel.ocny should be negatlve. to
compensate;:. The farther: the: pendulum tilts to the right, thfa.larg.er the negative
= ) i " ity .should be positive if the pendulum
motor:velocity, should:be: . The :motor:velocity I hich ds to
o tilts tosthe-left: So: the:fourth row of the FAM bank matrl"’lW - Tl(iiosn::go :ment
Af.= ZE; should ‘equal the ordinal inverse of Et:hc @ row values. g
includes the steady-state FAM ru.lc. (ZE, %1]13{ t%le)i)cndulum moves. If the angular

Now suppose the angle 6 is zero hoot to the left. So the motor velocity

velocity is negative, the pendulum will overs

velocity i itive, the motor
iti the angular.velocity is ‘positive,
e be»‘-POSltlve.toacompeﬂsa;eé.rgter the z%ngular.vclocity.ls in magnitude, the

velocity, should be negative. Th . itude. So the fourth column of the
pTea ity -should be in:magnitude. P
greater. the motor velocity S = ZE, should equal the ordinal inverse

. . ds to 0
Sa-tanksmanix, w]hwh %ﬁgezggingnment also includes the steady-statet.l;'gl\r/ll1 ;:x;:-.
Vg COlugm vla;es\;/ith negative Af.values should _prolduscg ?]Sgarl\IS' NS) is
itive - u . ’ ’
Curreti‘»)sz.lnl‘;:s, .si‘:;e the pendulu d the verie?

m heads towar:
a.candidate -FAM :rule. Symmetrically,

i ith pOSiti e Af values
negative # values wi ‘ \" :
ve mo ’ ’ t candidate
should produce positive m tor-current values. So (NS, PS; PS) is another
Toauce.
AM rule.
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This gives 15 FAM rules altogether. In practice these rules can successfully
balance an inverted pendulum. Different, and smaller, subsets of FAM rules can
also balance the pendulum. The software problems at the end of the chapter explore

. these cases. o ‘
We can represent the bank of 15 FAM rules as the 7-by-7 linguistic matrix

g
YN N o Ns zE ps PMPL

NL |
NM

NS

A0 ZE

PS

PM

PL

The BIOFAM system F admits a geometric interpretation. The set of all
possible input-outpairs (8, Af; F(0, Af)) defines a FAM surface in the input-output
product space, in this case in R3. We plot examples of these control surfaces in
Chapters 9, 10 and 11. _

The BIOFAM inference procedure activates in parallel the antecedents of all
15 FAM rules. The binary or pulse nature of inputs picks off single fit values
from the quantizing fuzzy-set values of the fuzzy variables. We can use either the
correlation-minimum or correlation-product inferencing technique. For simplicity
we shall illustrate the procedure with correlation-minimum inferencing.

Suppose the current pendulum angle 6 equals 15 degrees and the angular
velocity Af equals —10. This amounts to passing two bit vectors of one 1 and all
else 0 through the BIOFAM system. What is the corresponding motor-current value
v = F(15, —-10)?

Consider first how the input data pair (15, —10) activates the steady-state FAM
rule (ZE, ZE; ZE). Suppose we define the antecedent and consequent fuzzy sets
for ZE with the triangular fuzzy-set membership functions in Figure 8.4. Then the
angle datum 15 defines a zero angle value to degree .2: mJg(15) = .2. The angular-
vSelocity datum —10 defines a zero angular-velocity value to degree .5 : m22(—10) =

We combine the antecedent fit values with minimum or maximum depending
on whether we combine the antecedent fuzzy sets with the conjunctive AND or the

disjunctive OR. Intuitively, it should be at least as difficult to satisfy both antecedent
- conditions as to satisfy either one separately. |
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FAM Rule (PS, NS; NS)
If 6 =PS and A8 = ZE,
PS ZE then v = NS
.8
|
|
|
2 L. ?
— 0 |15+ o

6 |
} FAM Rule (ZE, ZE; ZE)
‘ If0 = ZE and A6 = ZE,

- || thenv = ZE " 7E
|
|
Y AR T -
}
- 0 | 15 + ¥
6 ’
6 = 15|

AM correlation-minimum inference procedure. The FAM system
Zﬁz:tg c8>f.4theFtwo two-antecedent FAM rules (PS, ZE; NS) and (ZE, ZE; ZE).
The input angle datum equals 15 and is more a small but positive angle value
than a zero angle value. The input angular-velocity datum equals -10, and is a
zero angular-velocity value only to degrge .5. The system combines antecedent
fit values with minimum, since the conjunction AND combines the antecedent
terms. The combined fit value then scales the consequent fuzzy set with pairwise
minim'um The system adds the minimum-scaled output fuzzy sets and computes
the fuzzy-centrold of this output waveform. This yields the system output-current

value —3.

i . ZE) implicitly assumes that we combine
FAM-rule notation (ZE, ZE., -
mtecziiit fuzzy sets conjunctively with AND. So the data satisfy the compound
antecedent of the FAM rule (ZE, ZE; ZE) to degree

min(mg(15), m2g(=10)) = min(2,.5)
= .2
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This methodology-extends to any number of antecedent terms connected with arbi-
trary logical (set-theoretical) ‘connectives.

‘The system should now activate the consequent fuzzy set of zero-motor-current
values to degree .2. This differs from activating the ZE: motor-current fuzzy set
100 percent with probability .2, and certainly differs from Prob {v = 0} = .2,
Instead a deterministic 20 percent of ZE should result and, according to the additive
combination. formula (8-17), we should. add this truncated fuzzy set to the final
output fuzzy set.

The correlation-minimum inference procedure activates the angular-velocity

fuzzy set ZE to degree "2 by taking the pairwise minimum of .2 and the ZE fuzzy
set mzg: U0 ' '

min(mzg(15), mgg(=10)) Ampe(v) = .2 Amiy(v)

for all velocity values v. The correlation-product inference procedure would multi-
ply the zero-angular-velocity fuzzy set by. .2: 2mzg(v) for.all v.

_The data similarly activate the FAM rule (PS, ZE: NS) depicted in Figure 8.4.
The angle datum 15 is a small but ‘positive angle value to degree .8. The angular-
velocity datum —10 is a zero-angular-velocity value to degree .5. So we scale the
output motor-velocity fuzzy set of small but' negative motor-velocity values by .5,
the lesser of the two antecedent fit values: :

min(mps (15), ma8(—10)) Amis(v) = 5 miys(v)

.. for all velocity values v.. So the data activate the FAM rule (PS, ZE; NS) to greater

degree than it activates the steady-state FAM rule (ZE, ZE; ZE) since in this example
an angle value of 15 degrees is more a small but positive .angle value than a zero
angle value.

~The 'data similarly activate the other 13 FA
minimum-scaled -consequent fuzzy. sets accordin
We can then compute the fuzzy centroid with Eq
ireplacing. the discrete sums, to.determine: the s
“Chapter 11 we show that, for symmetric fuzzy-

“always compute the centroid exactly with simple discrete sums even if the fuzzy
Sets are.continuous.. In many real-time applic

. ations we must repeat this entire FAM
=mferfmce,lprocedure hundreds, perhaps thousands,: of. times per second. This may
:requlre.fuzzy VLSI or optical processors.

Figure 8.4 illustrates the equal-weight additive combination procedure for just
‘ tht:,FAM ru}es (ZE, ZE; ZE) and (PS, ZE; NS). In this case. the fuzzy-centroidal
~ motor-velocity value: equals —3,

M rules. We combine the resulting
g to (8-17) by-summing pointwise.
uation (8-19), with perhaps integrals
pecific output motor velocity v. In
set values of fuzzy variables, we can
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